Helper function that combines objects of class cv_ammi
,
cv_ammif
or cv_blup
. It is useful when looking for a boxplot
containing the RMSPD values of those cross-validation procedures.
Value
An object of class cv_ammif
. The results will depend on the
argument bind
. If bind = 'boot'
then the RMSPD of all models
in ...
will be bind to a unique data frame. If bind = 'means'
then the RMSPD mean of all models in ...
will be bind to an unique
data frame.
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
# Two examples with only 5 resampling procedures
AMMI <- cv_ammi(data_ge,
resp = GY,
gen = GEN,
env = ENV,
rep = REP,
nboot = 5)
#> Validating 1 of 5 sets |======== | 20% 00:00:00
Validating 2 of 5 sets |================ | 40% 00:00:01
Validating 3 of 5 sets |========================= | 60% 00:00:02
Validating 4 of 5 sets |================================= | 80% 00:00:02
Validating 5 of 5 sets |=========================================| 100% 00:00:03
BLUP <- cv_blup(data_ge,
resp = GY,
gen = GEN,
env = ENV,
rep = REP,
nboot = 5)
#> Validating 1 of 5 sets |======== | 20% 00:00:00
Validating 2 of 5 sets |================ | 40% 00:00:01
Validating 3 of 5 sets |========================= | 60% 00:00:01
Validating 4 of 5 sets |================================= | 80% 00:00:02
Validating 5 of 5 sets |=========================================| 100% 00:00:03
bind_data <- bind_cv(AMMI, BLUP)
plot(bind_data)
print(bind_cv(AMMI, BLUP, bind = 'means'))
#> $RMSPD
#> MODEL mean sd se Q2.5 Q97.5
#> 1 BLUP_g_RCBD 0.4131957 0.02437101 0.01089905 0.3756587 0.4327774
#> 2 AMMI2 0.4238458 0.02355689 0.01053496 0.3895902 0.4465040
#>
#> attr(,"class")
#> [1] "cvalidation"
# }