
Package index
-
gafem()stable - Genotype analysis by fixed-effect models
-
gamem()stable - Genotype analysis by mixed-effect models
-
plot(<gafem>) - Several types of residual plots
-
plot(<gamem>) - Several types of residual plots
-
predict(<gamem>) - Predict method for gamem fits
-
print(<gamem>) - Print an object of class gamem
-
cv_ammi()stable - Cross-validation procedure
-
cv_ammif()stable - Cross-validation procedure
-
ammi_indexes()stable - AMMI-based stability indexes
-
impute_missing_val()stable - Missing value imputation
-
performs_ammi()stable - Additive Main effects and Multiplicative Interaction
-
waas()stable - Weighted Average of Absolute Scores
-
waas_means()stable - Weighted Average of Absolute Scores
-
plot(<cvalidation>) - Plot the RMSPD of a cross-validation procedure
-
plot(<performs_ammi>) - Several types of residual plots
-
plot(<waas>) - Several types of residual plots
-
predict(<waas>) - Predict the means of a waas object
-
predict(<performs_ammi>) - Predict the means of a performs_ammi object
-
print(<ammi_indexes>) - Print an object of class ammi_indexes
-
print(<performs_ammi>) - Print an object of class performs_ammi
-
print(<waas>) - Print an object of class waas
-
print(<waas_means>) - Print an object of class waas_means
BLUP
Analyze genotypes in single- or multi-environment trials using mixed-effect models with variance components and genetic parameter estimation.
-
cv_blup()stable - Cross-validation procedure
-
gamem_met()stable - Genotype-environment analysis by mixed-effect models
-
hmgv()rpgv()hmrpgv()blup_indexes()stable - Stability indexes based on a mixed-effect model
-
waasb()stable - Weighted Average of Absolute Scores
-
wsmp()stable - Weighting between stability and mean performance
-
plot_blup()stable - Plot the BLUPs for genotypes
-
plot_eigen()stable - Plot the eigenvalues
-
plot_scores()stable - Plot scores in different graphical interpretations
-
plot_waasby()stable - Plot WAASBY values for genotype ranking
-
plot(<wsmp>) - Plot heat maps with genotype ranking
-
plot(<waasb>) - Several types of residual plots
-
predict(<waasb>) - Predict method for waasb fits
-
print(<waasb>) - Print an object of class waasb
-
gge()stable - Genotype plus genotype-by-environment model
-
gtb()stable - Genotype by trait biplot
-
gytb()stable - Genotype by yield*trait biplot
-
plot(<gge>) - Create GGE, GT or GYT biplots
-
predict(<gge>) - Predict a two-way table based on GGE model
-
coincidence_index()stable - Computes the coincidence index of genotype selection
-
fai_blup()stable - Multi-trait selection index
-
mps()experimental - Mean performance and stability in multi-environment trials
-
mtmps()experimental - Multi-trait mean performance and stability index
-
mtsi()stable - Multi-trait stability index
-
mgidi()stable - Multitrait Genotype-Ideotype Distance Index
-
plot(<fai_blup>) - Multi-trait selection index
-
plot(<mgidi>) - Plot the multi-trait genotype-ideotype distance index
-
print(<mgidi>) - Print an object of class mgidi Print a
mgidiobject in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.
-
plot(<mtsi>) - Plot the multi-trait stability index
-
plot(<mtmps>) - Plot the multi-trait stability index
-
plot(<sh>) - Plot the Smith-Hazel index
-
print(<coincidence>) - Print an object of class coincidence
-
print(<mtsi>) - Print an object of class mtsi
-
print(<mtmps>) - Print an object of class mtmps
-
print(<sh>) - Print an object of class sh
-
Smith_Hazel()stable - Smith-Hazel index
Genotype-environment interaction
Visualize genotype-environment interaction patterns, rank genotypes within environments, compute genotype, environment, and genotype-environment effects; cluster environments, and compute parametric and non-parametric stability indexes
-
anova_ind()stable - Within-environment analysis of variance
-
anova_joint()stable - Joint analysis of variance
-
ge_cluster()stable - Cluster genotypes or environments
-
ge_details()stable - Details for genotype-environment trials
-
ge_effects()stable - Genotype-environment effects
-
ge_means()stable - Genotype-environment means
-
ge_plot()stable - Graphical analysis of genotype-vs-environment interaction
-
ge_simula()g_simula()experimental - Simulate genotype and genotype-environment data
-
ge_winners()stable - Genotype-environment winners
-
is_balanced_trial() - Check if a data set is balanced
-
Annicchiarico()stable - Annicchiarico's genotypic confidence index
-
corr_stab_ind()stable - Correlation between stability indexes
-
ecovalence()stable - Stability analysis based on Wricke's model
-
env_dissimilarity()stable - Dissimilarity between environments
-
env_stratification()stable - Environment stratification
-
ge_acv()stable - Adjusted Coefficient of Variation as yield stability index
-
ge_factanal()stable - Stability analysis and environment stratification
-
ge_polar()stable - Power Law Residuals as yield stability index
-
ge_reg()stable - Eberhart and Russell's regression model
-
ge_stats()stable - Parametric and non-parametric stability statistics
-
gai()stable - Geometric adaptability index
-
plaisted_peterson()stable - Stability analysis based on Plaisted and Peterson (1959)
-
print(<plaisted_peterson>) - Print an object of class plaisted_peterson
-
plot(<anova_joint>) - Several types of residual plots
-
plot(<env_dissimilarity>) - Plot an object of class env_dissimilarity
-
plot(<env_stratification>) - Plot the env_stratification model
-
plot(<ge_cluster>) - Plot an object of class ge_cluster
-
plot(<ge_effects>) - Plot an object of class ge_effects
-
plot(<ge_factanal>) - Plot the ge_factanal model
-
plot(<ge_reg>) - Plot an object of class ge_reg
-
print(<Annicchiarico>) - Print an object of class Annicchiarico
-
print(<anova_ind>) - Print an object of class anova_ind
-
print(<anova_joint>) - Print an object of class anova_joint
-
print(<ecovalence>) - Print an object of class ecovalence
-
print(<env_dissimilarity>) - Print an object of class env_dissimilarity
-
print(<env_stratification>) - Print the env_stratification model
-
print(<ge_factanal>) - Print an object of class ge_factanal
-
print(<ge_reg>) - Print an object of class ge_reg
-
print(<ge_stats>) - Print an object of class ge_stats
-
print(<Shukla>) - Print an object of class Shukla
-
print(<Schmildt>) - Print an object of class Schmildt
-
Schmildt()stable - Schmildt's genotypic confidence index
-
Fox()stable - Fox's stability function
-
Huehn()stable - Huehn's stability statistics
-
print(<Fox>) - Print an object of class Fox
-
print(<Huehn>) - Print an object ofclass
Huehn
-
print(<superiority>) - Print an object ofclass
superiority
-
print(<Thennarasu>) - Print an object ofclass
Thennarasu
-
Shukla()stable - Shukla's stability variance parameter
-
superiority()stable - Lin e Binns' superiority index
-
Thennarasu()stable - Thennarasu's stability statistics
-
as.lpcor()stable - Coerce to an object of class lpcor
-
corr_coef() - Linear and partial correlation coefficients
-
corr_plot()stable - Visualization of a correlation matrix
-
corr_focus() - Focus on section of a correlation matrix
-
corr_ci()stable - Confidence interval for correlation coefficient
-
corr_ss()stable - Sample size planning for a desired Pearson's correlation confidence interval
-
correlated_vars()experimental - Generate correlated variables
-
covcor_design()stable - Variance-covariance matrices for designed experiments
-
get_corvars()stable - Generate normal, correlated variables
-
get_covmat()stable - Generate a covariance matrix
-
is.lpcor()stable - Coerce to an object of class lpcor
-
lpcor()stable - Linear and Partial Correlation Coefficients
-
mantel_test()stable - Mantel test
-
network_plot() - Network plot of a correlation matrix
-
pairs_mantel()stable - Mantel test for a set of correlation matrices
-
plot_ci()stable - Plot the confidence interval for correlation
-
plot(<corr_coef>) - Create a correlation heat map
-
plot(<correlated_vars>) - Plot an object of class correlated_vars
-
print(<corr_coef>) - Print an object of class corr_coef
-
print(<lpcor>) - Print the partial correlation coefficients
-
can_corr()stable - Canonical correlation analysis
-
plot(<can_cor>) - Plots an object of class can_cor
-
print(<can_cor>) - Print an object of class can_cor
-
clustering()stable - Clustering analysis
-
get_dist()stable - Get a distance matrix
-
mahala()stable - Mahalanobis Distance
-
mahala_design()stable - Mahalanobis distance from designed experiments
-
plot(<clustering>) - Plot an object of class clustering
-
colindiag()stable - Collinearity Diagnostics
-
non_collinear_vars()stable - Select a set of predictors with minimal multicollinearity
-
path_coeff()path_coeff_mat()path_coeff_seq()stable - Path coefficients with minimal multicollinearity
-
print(<colindiag>) - Print an object of class colindiag
-
print(<path_coeff>) - Print an object of class path_coeff
-
plot(<path_coeff>) - Plots an object of class
path_coeff
-
select_pred() - Selects a best subset of predictor variables.
-
plot_bars()plot_factbars()stable - Fast way to create bar plots
-
plot_lines()plot_factlines()stable - Fast way to create line plots
-
plot(<resp_surf>) - Plot the response surface model
-
resp_surf()stable - Response surface model
-
acv()stable - Adjusted Coefficient of Variation
-
desc_stat()desc_wider()stable - Descriptive statistics
-
find_outliers()stable - Find possible outliers in a dataset
-
inspect()stable - Check for common errors in multi-environment trial data
-
fill_na()has_na()prop_na()remove_rows_na()remove_rows_all_na()remove_cols_na()remove_cols_all_na()select_cols_na()select_rows_na()replace_na()random_na()has_zero()remove_rows_zero()remove_cols_zero()select_cols_zero()select_rows_zero()replace_zero()stable - Utilities for handling with NA and zero values
-
av_dev()ci_mean_t()ci_mean_z()cv()freq_table()freq_hist()hmean()gmean()kurt()n_missing()n_unique()n_valid()pseudo_sigma()range_data()row_col_mean()row_col_sum()sd_amo()sd_pop()sem()skew()sum_dev()ave_dev()sum_sq_dev()sum_sq()var_pop()var_amo()cv_by()max_by()min_by()means_by()mean_by()n_by()sd_by()var_by()sem_by()sum_by()stable - Useful functions for computing descriptive statistics
-
clip_read()clip_write()stable - Utilities for data Copy-Pasta
-
add_seq_block()recode_factor()df_to_selegen_54()experimental - Utilities for data organization
-
as_numeric()as_integer()as_logical()as_character()as_factor()stable - Encode variables to a specific format
-
all_upper_case()all_lower_case()all_title_case()first_upper_case()extract_number()extract_string()find_text_in_num()has_text_in_num()remove_space()remove_strings()replace_number()replace_string()round_cols()tidy_strings()stable - Utilities for handling with numbers and strings
-
add_cols()add_rows()add_row_id()all_pairs()add_prefix()add_suffix()colnames_to_lower()colnames_to_upper()colnames_to_title()column_to_first()column_to_last()column_to_rownames()rownames_to_column()remove_rownames()column_exists()concatenate()get_levels()get_levels_comb()get_level_size()reorder_cols()remove_cols()remove_rows()select_first_col()select_last_col()select_numeric_cols()select_non_numeric_cols()select_cols()select_rows()tidy_colnames()stable - Utilities for handling with rows and columns
-
make_upper_tri()make_lower_tri()make_lower_upper()make_sym()tidy_sym()stable - Utilities for handling with matrices
-
make_long()stable - Two-way table to a 'long' format
-
make_mat()stable - Make a two-way table
-
reorder_cormat()stable - Reorder a correlation matrix
-
solve_svd()stable - Pseudoinverse of a square matrix
-
set_intersect()set_union()set_difference()stable - Utilities for set operations for many sets
-
venn_plot()stable - Draw Venn diagrams
-
progress()run_progress()experimental - Utilities for text progress bar in the terminal
-
add_class()has_class()remove_class()set_class() - Utilities for handling with classes
-
arrange_ggplot()experimental - Arrange separate ggplots into the same graphic
-
split_factors()as.split_factors()is.split_factors()stable - Split a data frame by factors
-
bind_cv()stable - Bind cross-validation objects
-
comb_vars()stable - Pairwise combinations of variables
-
doo() - Alternative to dplyr::do for doing anything
-
get_model_data()gmd()sel_gen()experimental - Get data from a model easily
-
rbind_fill_id()stable - Helper function for binding rows
-
resca()stable - Rescale a variable to have specified minimum and maximum values
-
residual_plots()stable - Several types of residual plots
-
set_wd_here()get_wd_here()open_wd_here()open_wd()experimental - Set and get the Working Directory quicky
-
stars_pval() - Generate significance stars from p-values
-
theme_metan()theme_metan_minimal()transparent_color()ggplot_color()alpha_color() - Personalized theme for ggplot2-based graphics
-
transpose_df()experimental - Transpose a data frame
-
tukey_hsd()experimental - Tukey Honest Significant Differences
-
sample_random()sample_systematic() - Random Sampling
-
metan - Multi-Environment Trial Analysis
-
data_alpha - Data from an alpha lattice design
-
data_g - Single maize trial
-
data_ge - Multi-environment trial of oat
-
data_ge2 - Multi-environment trial of maize
-
int.effects - Data for examples
-
meansGxE - Data for examples