Stability analysis based on Plaisted and Peterson (1959)
Source:R/plaisted_peterson.R
plaisted_peterson.Rd
The function computes the stability as the arithmetic mean of the variance component of the genotype-environment interaction between environment pairs that includes a given genotype
Arguments
- .data
The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s).
- env
The name of the column that contains the levels of the environments.
- gen
The name of the column that contains the levels of the genotypes.
- rep
The name of the column that contains the levels of the replications/blocks.
- resp
The response variable(s). To analyze multiple variables in a single procedure use, for example,
resp = c(var1, var2, var3)
.- verbose
Logical argument. If
verbose = FALSE
the code will run silently.
Value
An object of class plaisted_peterson
containing the results for each
variable used in the argument resp
.
References
Plaisted, R.L., and L.C. Peterson. 1959. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. American Potato Journal 36(11): 381–385. doi:10.1007/BF02852735
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
plaisted_peterson(data_ge, ENV, GEN, REP, GY)
#> Evaluating trait GY |============================================| 100% 00:00:00
#> Variable GY
#> G1 G10 G2 G3 G4 G5
#> G1 NA 0.12503363 0.02061323 -0.0055346368 0.024997141 0.031362699
#> G10 0.125033634 NA 0.14430703 0.0843416461 0.093958529 0.076995313
#> G2 0.020613234 0.14430703 NA 0.0257285799 0.023524884 0.040610553
#> G3 -0.005534637 0.08434165 0.02572858 NA 0.015273161 0.005673726
#> G4 0.024997141 0.09395853 0.02352488 0.0152731612 NA -0.005702818
#> G5 0.031362699 0.07699531 0.04061055 0.0056737264 -0.005702818 NA
#> G6 0.016916927 0.11171495 0.05124422 -0.0099631033 0.005872310 -0.012946149
#> G7 0.028707482 0.19150849 0.05029837 0.0502960198 0.035132557 0.048298953
#> G8 -0.007565760 0.15713144 0.05730481 -0.0002494876 0.071612521 0.055308115
#> G9 0.031977269 0.14509552 0.08525933 0.0375471911 0.145944773 0.106988291
#> G6 G7 G8 G9 theta theta_prop
#> G1 0.016916927 0.02870748 -0.0075657602 0.03197727 0.02961200 5.221324
#> G10 0.111714955 0.19150849 0.1571314411 0.14509552 0.12556517 22.140231
#> G2 0.051244217 0.05029837 0.0573048092 0.08525933 0.05543233 9.774085
#> G3 -0.009963103 0.05029602 -0.0002494876 0.03754719 0.02256812 3.979315
#> G4 0.005872310 0.03513256 0.0716125211 0.14594477 0.04562367 8.044577
#> G5 -0.012946149 0.04829895 0.0553081149 0.10698829 0.03850985 6.790235
#> G6 NA 0.05019598 0.0266023305 0.10212977 0.03797414 6.695775
#> G7 0.050195980 NA 0.0501701107 0.13919471 0.07153363 12.613140
#> G8 0.026602330 0.05017011 NA 0.02920043 0.04883494 8.610803
#> G9 0.102129773 0.13919471 0.0292004251 NA 0.09148192 16.130515
#>
#>
#>
# }