Skip to contents

Print the anova_joint object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a *.txt file.

Usage

# S3 method for class 'anova_joint'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x

An object of class anova_joint.

export

A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name

The name of the file if export = TRUE

digits

The significant digits to be shown.

...

Options used by the tibble package to format the output. See tibble::print() for more details.

Author

Tiago Olivoto tiagoolivoto@gmail.com

Examples

# \donttest{
library(metan)
model <- data_ge %>% anova_joint(ENV, GEN, REP, c(GY, HM))
#> variable GY 
#> ---------------------------------------------------------------------------
#> Joint ANOVA table
#> ---------------------------------------------------------------------------
#>      Source     Df Sum Sq Mean Sq F value   Pr(>F)
#>         ENV  13.00 279.57 21.5057   62.33 3.90e-17
#>    REP(ENV)  28.00   9.66  0.3451    3.57 3.59e-08
#>         GEN   9.00  13.00  1.4439    5.41 3.44e-06
#>     GEN:ENV 117.00  31.22  0.2668    2.76 1.01e-11
#>     ENV/GEN 130.00 310.79  2.3907   24.72 9.58e-95
#>      ENV/G1  13.00  32.69  2.5146   26.01 1.90e-39
#>     ENV/G10  13.00  42.71  3.2855   33.98 4.72e-48
#>      ENV/G2  13.00  34.03  2.6180   27.08 1.11e-40
#>      ENV/G3  13.00  30.39  2.3380   24.18 2.83e-37
#>      ENV/G4  13.00  26.80  2.0618   21.32 1.06e-33
#>      ENV/G5  13.00  23.47  1.8050   18.67 3.66e-30
#>      ENV/G6  13.00  22.02  1.6937   17.52 1.47e-28
#>      ENV/G7  13.00  21.99  1.6917   17.50 1.58e-28
#>      ENV/G8  13.00  32.45  2.4961   25.82 3.18e-39
#>      ENV/G9  13.00  44.24  3.4028   35.19 2.97e-49
#>   Residuals 252.00  24.37  0.0967      NA       NA
#>       CV(%)  11.63     NA      NA      NA       NA
#>   MSR+/MSR-   6.71     NA      NA      NA       NA
#>      OVmean   2.67     NA      NA      NA       NA
#> ---------------------------------------------------------------------------
#> 
#> variable HM 
#> ---------------------------------------------------------------------------
#> Joint ANOVA table
#> ---------------------------------------------------------------------------
#>      Source     Df Sum Sq Mean Sq F value   Pr(>F)
#>         ENV  13.00   5710  439.26   57.22 1.22e-16
#>    REP(ENV)  28.00    215    7.68    2.70 2.20e-05
#>         GEN   9.00    270   29.98    3.19 1.76e-03
#>     GEN:ENV 117.00   1101    9.41    3.31 1.06e-15
#>     ENV/GEN 130.00   6811   52.39   18.45 9.92e-81
#>      ENV/G1  13.00    621   47.74   16.81 1.50e-27
#>     ENV/G10  13.00   1111   85.48   30.10 4.97e-44
#>      ENV/G2  13.00    642   49.42   17.40 2.15e-28
#>      ENV/G3  13.00    631   48.57   17.10 5.72e-28
#>      ENV/G4  13.00    556   42.77   15.06 5.56e-25
#>      ENV/G5  13.00    491   37.78   13.30 2.77e-22
#>      ENV/G6  13.00    677   52.11   18.35 1.01e-29
#>      ENV/G7  13.00    572   44.00   15.49 1.26e-25
#>      ENV/G8  13.00    591   45.46   16.01 2.18e-26
#>      ENV/G9  13.00    918   70.61   24.86 4.27e-38
#>   Residuals 252.00    716    2.84      NA       NA
#>       CV(%)   3.50     NA      NA      NA       NA
#>   MSR+/MSR-   5.24     NA      NA      NA       NA
#>      OVmean  48.09     NA      NA      NA       NA
#> ---------------------------------------------------------------------------
#> 
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
#> Done!
print(model)
#> Variable GY 
#> ---------------------------------------------------------------------------
#> $anova
#>        Source         Df     Sum Sq     Mean Sq   F value       Pr(>F)
#> 1         ENV  13.000000 279.573552 21.50565785 62.325457 3.897252e-17
#> 2    REP(ENV)  28.000000   9.661516  0.34505416  3.568548 3.593191e-08
#> 3         GEN   9.000000  12.995044  1.44389374  5.411208 3.441249e-06
#> 4     GEN:ENV 117.000000  31.219565  0.26683389  2.759595 1.005191e-11
#> 5     ENV/GEN 130.000000 310.793117  2.39071628 24.724774 9.581857e-95
#> 6      ENV/G1  13.000000  32.690006  2.51461584 26.006143 1.900819e-39
#> 7     ENV/G10  13.000000  42.710925  3.28545576 33.978165 4.716683e-48
#> 8      ENV/G2  13.000000  34.033879  2.61799067 27.075244 1.109382e-40
#> 9      ENV/G3  13.000000  30.394126  2.33800967 24.179683 2.828854e-37
#> 10     ENV/G4  13.000000  26.803006  2.06176968 21.322810 1.064021e-33
#> 11     ENV/G5  13.000000  23.465603  1.80504639 18.667779 3.661530e-30
#> 12     ENV/G6  13.000000  22.017802  1.69367706 17.515998 1.472928e-28
#> 13     ENV/G7  13.000000  21.991672  1.69166707 17.495211 1.575983e-28
#> 14     ENV/G8  13.000000  32.449759  2.49613527 25.815017 3.179843e-39
#> 15     ENV/G9  13.000000  44.236341  3.40279543 35.191691 2.970939e-49
#> 16  Residuals 252.000000  24.366674  0.09669315        NA           NA
#> 17      CV(%)  11.627790         NA          NA        NA           NA
#> 18  MSR+/MSR-   6.708789         NA          NA        NA           NA
#> 19     OVmean   2.674242         NA          NA        NA           NA
#> 
#> $model
#> Call:
#>    aov(formula = mean ~ GEN + ENV + GEN:ENV + ENV/REP, data = data)
#> 
#> Terms:
#>                       GEN       ENV   GEN:ENV   ENV:REP Residuals
#> Sum of Squares   12.99504 279.57355  31.21956   9.66152  24.36667
#> Deg. of Freedom         9        13       117        28       252
#> 
#> Residual standard error: 0.3109552
#> Estimated effects may be unbalanced
#> 
#> $augment
#> # A tibble: 420 × 11
#>    ENV   GEN   REP    mean   hat sigma fitted    resid  stdres se.fit factors
#>    <fct> <fct> <fct> <dbl> <dbl> <dbl>  <dbl>    <dbl>   <dbl>  <dbl> <chr>  
#>  1 E1    G1    1      2.17 0.400 0.311   2.42 -0.255   -1.06    0.197 G1_1   
#>  2 E1    G1    2      2.50 0.400 0.311   2.40  0.101    0.420   0.197 G1_2   
#>  3 E1    G1    3      2.43 0.400 0.311   2.27  0.154    0.640   0.197 G1_3   
#>  4 E1    G2    1      3.21 0.400 0.311   2.96  0.249    1.04    0.197 G2_1   
#>  5 E1    G2    2      2.93 0.400 0.312   2.94 -0.00492 -0.0204  0.197 G2_2   
#>  6 E1    G2    3      2.56 0.400 0.311   2.81 -0.244   -1.01    0.197 G2_3   
#>  7 E1    G3    1      2.77 0.400 0.311   2.95 -0.176   -0.729   0.197 G3_1   
#>  8 E1    G3    2      3.62 0.400 0.306   2.92  0.696    2.89    0.197 G3_2   
#>  9 E1    G3    3      2.28 0.400 0.309   2.80 -0.521   -2.16    0.197 G3_3   
#> 10 E1    G4    1      2.36 0.400 0.311   2.65 -0.286   -1.19    0.197 G4_1   
#> # ℹ 410 more rows
#> 
#> $details
#> # A tibble: 10 × 2
#>    Parameters mean               
#>    <chr>      <chr>              
#>  1 Mean       "2.67"             
#>  2 SE         "0.05"             
#>  3 SD         "0.92"             
#>  4 CV         "34.56"            
#>  5 Min        "0.67 (G10 in E11)"
#>  6 Max        "5.09 (G8 in E5)"  
#>  7 MinENV     "E11 (1.37)"       
#>  8 MaxENV     "E3 (4.06)"        
#>  9 MinGEN     "G10 (2.47) "      
#> 10 MaxGEN     "G8 (3) "          
#> 
#> ---------------------------------------------------------------------------
#> 
#> 
#> 
#> Variable HM 
#> ---------------------------------------------------------------------------
#> $anova
#>        Source         Df    Sum Sq    Mean Sq   F value       Pr(>F)
#> 1         ENV  13.000000 5710.3167 439.255133 57.223777 1.217069e-16
#> 2    REP(ENV)  28.000000  214.9307   7.676095  2.702830 2.196589e-05
#> 3         GEN   9.000000  269.8112  29.979019  3.186551 1.758247e-03
#> 4     GEN:ENV 117.000000 1100.7341   9.407984  3.312646 1.063605e-15
#> 5     ENV/GEN 130.000000 6811.0509  52.392699 18.447997 9.916041e-81
#> 6      ENV/G1  13.000000  620.5836  47.737197 16.808748 1.499159e-27
#> 7     ENV/G10  13.000000 1111.2324  85.479418 30.098164 4.972287e-44
#> 8      ENV/G2  13.000000  642.4162  49.416628 17.400093 2.148481e-28
#> 9      ENV/G3  13.000000  631.3726  48.567122 17.100973 5.719835e-28
#> 10     ENV/G4  13.000000  556.0049  42.769609 15.059610 5.557480e-25
#> 11     ENV/G5  13.000000  491.1414  37.780110 13.302757 2.765261e-22
#> 12     ENV/G6  13.000000  677.4113  52.108563 18.347950 1.011041e-29
#> 13     ENV/G7  13.000000  571.9678  43.997522 15.491971 1.257138e-25
#> 14     ENV/G8  13.000000  591.0281  45.463700 16.008227 2.176389e-26
#> 15     ENV/G9  13.000000  917.8926  70.607120 24.861479 4.273104e-38
#> 16  Residuals 252.000000  715.6853   2.840021        NA           NA
#> 17      CV(%)   3.504463        NA         NA        NA           NA
#> 18  MSR+/MSR-   5.235567        NA         NA        NA           NA
#> 19     OVmean  48.088286        NA         NA        NA           NA
#> 
#> $model
#> Call:
#>    aov(formula = mean ~ GEN + ENV + GEN:ENV + ENV/REP, data = data)
#> 
#> Terms:
#>                      GEN      ENV  GEN:ENV  ENV:REP Residuals
#> Sum of Squares   269.811 5710.317 1100.734  214.931   715.685
#> Deg. of Freedom        9       13      117       28       252
#> 
#> Residual standard error: 1.685236
#> Estimated effects may be unbalanced
#> 
#> $augment
#> # A tibble: 420 × 11
#>    ENV   GEN   REP    mean   hat sigma fitted  resid stdres se.fit factors
#>    <fct> <fct> <fct> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <chr>  
#>  1 E1    G1    1      44.9 0.400  1.68   46.5 -1.62  -1.24    1.07 G1_1   
#>  2 E1    G1    2      46.9 0.400  1.69   46.0  0.942  0.721   1.07 G1_2   
#>  3 E1    G1    3      47.8 0.400  1.69   47.1  0.678  0.519   1.07 G1_3   
#>  4 E1    G2    1      45.2 0.400  1.69   45.4 -0.153 -0.117   1.07 G2_1   
#>  5 E1    G2    2      45.3 0.400  1.69   44.8  0.538  0.412   1.07 G2_2   
#>  6 E1    G2    3      45.5 0.400  1.69   45.9 -0.386 -0.295   1.07 G2_3   
#>  7 E1    G3    1      46.7 0.400  1.69   45.9  0.791  0.606   1.07 G3_1   
#>  8 E1    G3    2      43.2 0.400  1.68   45.3 -2.11  -1.62    1.07 G3_2   
#>  9 E1    G3    3      47.8 0.400  1.69   46.4  1.32   1.01    1.07 G3_3   
#> 10 E1    G4    1      47.9 0.400  1.69   48.3 -0.386 -0.296   1.07 G4_1   
#> # ℹ 410 more rows
#> 
#> $details
#> # A tibble: 10 × 2
#>    Parameters mean            
#>    <chr>      <chr>           
#>  1 Mean       "48.09"         
#>  2 SE         "0.21"          
#>  3 SD         "4.37"          
#>  4 CV         "9.09"          
#>  5 Min        "38 (G2 in E14)"
#>  6 Max        "58 (G8 in E11)"
#>  7 MinENV     "E14 (41.03)"   
#>  8 MaxENV     "E11 (54.2)"    
#>  9 MinGEN     "G2 (46.66) "   
#> 10 MaxGEN     "G5 (49.3) "    
#> 
#> ---------------------------------------------------------------------------
#> 
#> 
#> 
# }